

Dark matter collider: cascade signals from inelastic boosted DM

Seodong Shin

arXiv: 1612.06867 with Doojin Kim, Jong-Chul Park

- Relativistic scattering signals of DM
- Cascade process with more complicated one
- Detection prospects of electron scattering
- Detection prospects of proton scattering
- Conclusions

Popular diagram shown everywhere for the search of WIMP

but some hints as well (although bkg. is not fully understood)

- γ -rays from the galactic center
- Positron ratio
- Neutrino signals

but some hints as well (although bkg. is not fully understood)

- γ -rays from the galactic center
- Positron ratio
- Neutrino signals

DM signal not sensitive to direct detection & colliders

Secluded Dark Matter?

- Size of DM interaction with SM is small: avoid strong bounds from direct detection & colliders
- Processes for the relic/ID are separated from DD or collider: need more particles in the dark sector

Kim, **SS**, 0901.2609 Kim, Lee, **SS**, 0803.2932

Singlet Fermionic Dark Matter

Y.G. Kim, K.Y. Lee, **SS**, JHEP 0805, 100 [arXiv:0803.2932]

A renormalizable Higgs portal WIMP model

(induce bunch of phenomenological studies: exotic decay, ...)

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Indirect detection can be a key guide: provide reference parameters for the searches in colliders & DD
- Relativistic scattering of DM with a target

Consistent parameters in famous WIMP models

Kim, Lee, Park, **SS**, 1601.05089 & many others.....

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Indirect detection can be a key guide: provide reference parameters for the searches in colliders & DD Kim, Lee, Park, SS, 1601.05089
- Relativistic scattering of DM with a target

Search of Secluded Dark Matter

How do you search such a hidden DM?

- Indirect detection can be a key guide: provide reference parameters for the searches in colliders & DD Kim, Lee, Park, SS, 1601.05089
- Relativistic scattering of DM with a target

- Some components of DM are relativistic: boosted DM
 Agashe, Cui, Necib, Thaler, 1405.7370
 Kong, Mohlaberg, Park, 1411.6632
- (Light) DM is produced in fixed target experiments Bjorken, Essig, Schuster, Toro, 0906.0580 Batell, Pospelov, Ritz, 0906.5614

Boosted DM

Minimal model example

Belanger, Park, 1112.4491 Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Agashe, Cui, Necib, Thaler, 1405.7370

Boosted DM

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM \downarrow \downarrow through χ_1

• $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector \because flux small $m_{\chi_h} \gtrsim \mathcal{O}(10 \,\text{GeV})$

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM \downarrow \downarrow through χ_1

• $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector \because flux small $m_{\chi_h} \gtrsim \mathcal{O}(10 \,\text{GeV})$

	Volume [Mt]	$E_e^{\rm thres}$ [GeV]	E_p^{thres} [GeV]	$ heta_e^{ ext{res}}$	$ heta_p^{ m res}$
Super-K	0.0224	0.01	1.07	3°	3°
Hyper-K	0.56	0.01	1.07	3°	3°
DUNE	0.04	0.03	0.05	1°	5°
				even better	

Detection of boosted DM

Dominant relic χ_h : but do not directly interact with SM \downarrow \downarrow through χ_1

- $\chi_h \chi_h \rightarrow \chi_1 \chi_1$ (current universe) relativistic: need a huge detector \therefore flux small
- Fixed target experiments relativistic: high intensity increases flux

Signal observations in both cases

Counting Nevents over the expected background neutrino

Super interesting but not easy to confirm the signals over *v*

Signal observations in both cases

Counting N_{events} over the expected background neutrino

Super interesting but not easy to confirm the signals over *v*

Modification of minimal models make them promising

From Sun: a small coupling of χ_h - SM or self-interaction of χ_h ³ ³ ² ² Park
 Berger, Cui, Zhao, 1410.2246
 Kong, Mohlaberg, Park, 1411.6632
 Alhazmi, Kong, Mohlaberg, Park, 1611.09866

 More complicated dark sector (just like SM?): extraordinary signal Kim, Park, SS, 1612.06867

Cascade process in detection of DM

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1

- Heavier (unstable) dark partner χ_2 : $m_{\chi_2} > m_{\chi_1}$
- Mediator ϕ : not specified but assume either spin 0 or 1
- Secondary (or more) process by χ_2 : cascade signal (collider?)

- Focus on the detection prospects in huge neutrino detectors in this talk
- Fixed target experiments: future work

Electron scattering

Energy spectrum

- Everything is relativistic: need large energy to have χ_2 (large γ_{χ_1})
- Electron scattering with one vector mediator: light DM with huge γ_{χ_1}

Energy spectrum: e-scattering

- Everything is relativistic: need large energy to have χ_2 (large γ_{χ_1})
- Electron scattering with one vector mediator: light DM with huge γ_{χ_1}

Energy spectrum: e-scattering

e-scattering preferred over p-scattering

- Primary scattering cross section large when momentum transfer small
- <u>Eth low</u> for e-scattering but high for p-scattering (Cherenkov detectors) Kamiokande
- Proton scattering is suppressed by atomic form factor

e-scattering: detection prospects

	Volume [Mt]	$E_e^{\rm thres}$ [GeV]	$E_p^{\rm thres}$ [GeV]	$ heta_e^{ ext{res}}$	$ heta_p^{ m res}$
Super-K	0.0224	0.01	1.07	3°	3°
Hyper-K	0.56	0.01	1.07	3°	3°
DUNE	0.04	0.03	0.05	1°	5°
				even better	

e-scattering: detection prospects

e-scattering: sensitivities on flux

e-scattering: sensitivities on flux

Proton scattering

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Proton scattering is suppressed by atomic form factor

p-scattering NOT preferred over e-scattering (Cherenkov)

- Primary scattering cross section large when momentum transfer small
- E_{th} high for proton scattering (for Cherenkov)
- Suppression by atomic form factor: not so severe for $p_p < 2 \text{ GeV}$

However, the cascade process is still unique

- E_{th} low for proton scattering for liquid Ar detectors (DUNE: E_{th} 50 MeV)
- Separation of two signals are more promising than e-scattering

- E_{th} low for proton scattering for liquid Ar detectors (DUNE: E_{th} 50 MeV)
- Separation of two signals super good & <u>3 visible objects</u>

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

 $g_{12} = 0.5, \ \epsilon = 0.0003$

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2				
SK	13.6 yr	170	7.1	3500	5200	Less	sensitive	than	e
HK	1 yr	88	3.7	1900	2800				
HK	13.6 yr	6.7	0.28	140	210				
DUNE	1 yr	190	9.0	150	1600				
DUNE	13.6 yr	14	0.69	11	120				
unit: 10 ⁻⁷ cm ⁻² s ⁻¹									

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

 $g_{12} = 0.5, \ \epsilon = 0.0003$

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2	
SK	13.6 yr	170	7.1	3500	5200	
HK	1 yr	88	3.7	1900	2800	136 up of HK improves
HK	13.6 yr	6.7	0.28	140	210	toto groține amproves
DUNE	1 yr	190	9.0	150	1600	the sensitivity
DUNE	13.6 yr	14	0.69	11	120	
		unit: 10				

p-scattering: sensitivities on flux

Flux can be higher in non-minimal BDM model or fixed target experiments

 $g_{12} = 0.5, \ \epsilon = 0.0003$

Exp.	Run time	e-ref.1	e-ref.2	p-ref.1	p-ref.2	
SK	13.6 yr	170	7.1	3500	5200	Remarkable
HK	1 yr	88	3.7	1900	2800	improvement
HK	13.6 yr	6.7	0.28	140	210	in DUNE!!!
DUNE	1 yr	190	9.0	150	1600	
DUNE	13.6 yr	14	0.69	11	120	Promising
		unit: 10	$^{-7} {\rm cm}^{-2} {\rm s}^{-2}$	-1	(3 simultaneous signals)

Conclusions

- Complicated dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

e-scattering

- E_{th} low in Cherenkov light detectors (high σ)
- Sensitive with small flux
- Separation of two signals not easy (good for low p_e)

p-scattering

- E_{th} high in Cherenkov light detectors (low σ)
- Need large flux
- Separation of two signals & 3 visible objects: promising

Conclusions

- Complicated dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

Conclusions

- Complicated dark sector (χ_2): cascade process
- Analyzed in current & future huge v detectors:
 Super-K, Hyper-K, DUNE

Discussion for future

- Model building: χ_2 & mediator
- Analysis in fixed target experiments
- Background analysis
- Deep Inelastic Scattering region for proton scattering

Back up

Possible backgrounds

- Not energetic muon $\mu \rightarrow e_{\nu_e} \nu_{\mu}$ (e + ℓ): cut out by requiring E > 0.1 GeV
- $n_{\nu\tau} \rightarrow p\tau \rightarrow p\ell_{\nu\ell} \nu_{\tau} (p + \ell)$: cut out by requiring 3 visible objects

Back up

p-scattering: possible search area

Region of elastic scattering pp: [Eth, 1.8 GeV]

Back up

Singlet Fermionic Dark Matter

Y.G. Kim, K.Y. Lee, **SS**, JHEP 0805, 100 [arXiv:0803.2932]

A renormalizable Higgs portal WIMP model

(induce bunch of phenomenological studies: exotic decay, ...)

Secluded SFDM

Secluded set-up by Kim, Lee, Park, SS, 1601.05089

- Small mixing angle: Higgs measurements at the LHC & null results in direct detection
- Pseudoscalar int. in the dark sector: p-wave in t-channel WIMP-SM recoil s-wave in s-channel

Lopez-Honorez, Schwetz, Zupan, 1203.2064 Fedderke, Chen, Kolb, Wang, 1404.2283

$$-\mathcal{L}_{\rm int}^{\rm dark} = g_S \cos \xi \, s \bar{\psi} \psi + g_S \sin \xi \, s \bar{\psi} i \gamma^5 \psi,$$

Secluded SFDM for the γ -ray excess

Our starting point

- DM annihilation (not denying other possibilities)
- Apply the result by Calore et al., 1409.0042, 1411.4647: syst. & stat. error
- Assume a generalized NFW profile allowing the uncertainties in the astrophysical factor \bar{J} with scaling [0.17, 5.3] and $\gamma = 1.2$ Calore, Cholis, McCabe, Weniger, 1411.4647

$$\rho(r) = \rho_s \frac{(r/r_s)^{-\gamma}}{(1+r/r_s)^{3-\gamma}} \qquad \qquad \frac{\mathrm{d}N}{\mathrm{d}E} = \frac{\bar{J}}{16\pi m_\chi^2} \sum_f \langle \sigma v \rangle_f \frac{\mathrm{d}N_\gamma^f}{\mathrm{d}E} \\ \bar{J} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \int_{\mathrm{l.o.s}} \rho^2(r(s,\psi)) \,\mathrm{d}s \,\mathrm{d}\Omega_s$$

Secluded SFDM for the γ -ray excess

Analysis process

- Unavoidable bounds: Higgs measurements, \bar{p} ratios, γ -rays from dSphs.
- GeV level excess is best-fitted by changing \overline{J} while fixing the relic density as observed (how we avoid the astrophysical bounds)
- Check the pure (dark sector) pseudoscalar case first (sin ξ =1). If not good, allow the scalar interaction.

Best-fitted for $\psi \bar{\psi} \rightarrow b \bar{b}$, $h_i h_j$ as model independent i, j = 1, 2 searches expected

But some subtleties exist